Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 638-648, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282365

RESUMEN

Schizophrenia (SCZ) response to pharmacological treatment is highly variable. Quetiapine (QTP) administered as QTP lipid core nanocapsules (QLNC) has been shown to modulate drug delivery to the brain of SCZ phenotyped rats (SPR). In the present study, we describe the brain concentration-effect relationship after administrations of QTP as a solution or QLNC to SPR and naïve animals. A semimechanistic pharmacokinetic (PK) model describing free QTP concentrations in the brain was linked to a pharmacodynamic (PD) model to correlate the drug kinetics to changes in dopamine (DA) medial prefrontal cortex extracellular concentrations determined by intracerebral microdialysis. Different structural models were investigated to fit DA concentrations after QTP dosing, and the final model describes the synthesis, release, and elimination of DA using a pool compartment. The results show that nanoparticles increase QTP brain concentrations and DA peak after drug dosing to SPR. To the best of our knowledge, this is the first study that combines microdialysis and PK/PD modeling in a neurodevelopmental model of SCZ to investigate how a nanocarrier can modulate drug PK and PD, contributing to the development of new treatment strategies for SCZ.


Asunto(s)
Nanocápsulas , Esquizofrenia , Ratas , Animales , Fumarato de Quetiapina/farmacocinética , Dopamina , Nanocápsulas/química , Esquizofrenia/tratamiento farmacológico , Lípidos
2.
Clin Pharmacol Ther ; 115(2): 288-298, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37953500

RESUMEN

Increase in serum bile acids (BAs) in patients with primary biliary cholangitis (PBC) may play a causal role in cholestatic pruritus (itch). Linerixibat is a selective small molecule inhibitor of the ileal bile acid transporter, which blocks re-absorption of BAs in the gastrointestinal tract thereby lowering BAs in the systemic circulation and reducing itch. One consequence is excess BAs in the colon, leading to diarrhea and abdominal pain. GLIMMER (NCT02966834) was a placebo-controlled phase IIb dose-ranging trial of linerixibat once (q.d.) or twice daily (b.i.d.) in adults with moderate to severe pruritus and PBC. To determine the optimal dose for maximum itch reduction while minimizing diarrhea, a kinetic-pharmacodynamic (k-PD) model was developed using data from GLIMMER. The PD end point modeled was worst daily itch, derived from itch score reported by patients b.i.d. A proportional odds model was developed post hoc to indicate the probability of diarrhea occurrence, a patient-reported outcome (GI-5) recorded weekly. The final k-PD model successfully described the effects of linerixibat and placebo on itch. Model simulations were consistent with the observed dose-dependent increase in the average number of itch responders (patients with a ≥ 2-point improvement in itch). This was paralleled by a dose-dependent increase in the probability of higher diarrhea frequency scores. The b.i.d. dosing regimens led to a modest increase in the number of itch responders as compared with q.d. dosing. This quantitative framework highlights the trade-off between benefit and tolerability and supported the selection of 40 mg b.i.d. in the phase III GLISTEN trial (NCT04950127).


Asunto(s)
Tracto Gastrointestinal , Prurito , Adulto , Humanos , Protocolos Clínicos , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Medición de Resultados Informados por el Paciente , Prurito/tratamiento farmacológico
3.
Materials (Basel) ; 16(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37763529

RESUMEN

The mechanical properties of 2024 aluminum alloy were studied after two different tempers. The T351 temper (solution heat treatment, stress relief, and natural aging) leads to high hardness and toughness. A thermal treatment consisting of heat-treating at 280 °C for 48 h and slow cooling in a furnace, named TT temper, was performed to increase the precipitate size and their separation while minimizing the amount of solutes in solid solution, which produced the minimum hardness for an overaged Al2024 alloy and a lower tensile flow stress than for the T351 temper. The flow stress strongly decreases and the elongation to failure strongly increases for both materials above 300 °C. Differences in strain rate at a given stress in the power law regime at all temperatures for both tempers and compared with pure aluminum are attributed to the influence of solutes in solid solutions, affecting both the glide and climb of dislocations. However, the stacking fault energy, SFE, alone does not account for the hot deformation behavior. Thus, it is the synergistic effect of various solutes that affects the entire deformation process, causing a decrease of three or four orders of magnitude in strain rate for a given stress with respect to the pure aluminum matrix values.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36332881

RESUMEN

DNA double-strand breaks (DSBs) are repaired through three major pathways: Non-Homologous End-Joining (NHEJ), Microhomology-Mediated End-Joining (MMEJ), and Homology-Directed Repair (HDR), each requiring a specific set of diverse proteins. Such pathways and their proteins have been studied in model organisms, including arthropods; however, DSB repair pathways are scarcely described in Crustacea, a taxon that includes the commercially valuable penaeid shrimps (Crustacea: Decapoda: Penaeidae). In this work, transcriptome and proteome databases of Penaeus vannamei and other Crustacea species were scrutinized for each protein of the NHEJ pathway. The structural and functional attributes of such proteins in penaeids were determined using bioinformatics. Additionally, the expression of the NHEJ-related Ku70, Ku80, DNA-PKcs, DNA ligase 4 (Lig4), and HDR- and MMEJ-related protein transcripts were assessed in P. vannamei gills, midgut gland, hemocytes, and muscle by RT-PCR. DSB repair protein transcripts were found expressed in the four assayed tissues, particularly in the gills and midgut gland. Among DSB repair proteins, all the analyzed transcripts of proteins related to the NHEJ pathway were present in gills. To the best of our knowledge, this is the first report on the expression of DSB repair proteins in Decapoda. Together, proteomic, transcriptomic, and expression data suggest the functionality of NHEJ, HDR, and MMEJ pathways in P. vannamei and other decapods. The information presented here contributes to understanding the response to DSB breaks in shrimps, describing possible outcomes in oxidative stress studies and also in the designing of gene editing strategies, which have not been developed in Penaeidae.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteómica , Animales , Reparación del ADN , ADN/genética , ADN/metabolismo , Crustáceos
5.
Pharmaceutics ; 14(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745809

RESUMEN

Biofilms and infectious process may alter free antimicrobial concentrations at the site of infection. Tobramycin (TOB), an aminoglycoside used to treat lung infections caused by Pseudomonas aeruginosa, binds to alginate present in biofilm extracellular matrix increasing its minimum inhibitory concentration (MIC). This work aimed to investigate the impact of biofilm-forming P. aeruginosa infection on TOB lung and epithelial lining fluid (ELF) penetration, using microdialysis, and to develop a population pharmacokinetic (popPK) model to evaluate the probability of therapeutic target attainment of current dosing regimens employed in fibrocystic and non-fibrocystic patients. The popPK model developed has three compartments including the lung. The ELF concentrations were described by a penetration factor derived from the lung compartment. Infection was a covariate in lung volume (V3) and only chronic infection was a covariate in central volume (V1) and total clearance (CL). Simulations of the recommended treatments for acute and chronic infection achieved >90% probability of target attainment (PTA) in the lung with 4.5 mg/kg q24h and 11 mg/kg q24h, respectively, for the most prevalent P. aeruginosa MIC (0.5 mg/mL). The popPK model was successfully applied to evaluate the PTA of current TOB dosing regimens used in the clinic, indicating the need to investigate alternative posology.

6.
CPT Pharmacometrics Syst Pharmacol ; 11(6): 778-791, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35491971

RESUMEN

Obesity is an increasingly alarming public health threat, with nearly 20% of children classified as obese in the United States today. Children with obesity are commonly prescribed the opioids fentanyl and methadone, and accurate dosing is critical to reducing the risk of serious adverse events associated with overexposure. However, pharmacokinetic studies in children with obesity are challenging to conduct, so there is limited information to guide fentanyl and methadone dosing in these children. To address this clinical knowledge gap, physiologically-based pharmacokinetic models of fentanyl and methadone were developed in adults and scaled to children with and without obesity to explore the interplay of obesity, age, and pharmacogenomics. These models included key obesity-induced changes in physiology and pharmacogenomic effects. Model predictions captured observed concentrations in children with obesity well, with an overall average fold error of 0.72 and 1.08 for fentanyl and methadone, respectively. Model simulations support a reduced fentanyl dose (1 vs. 2 µg/kg/h) starting at an earlier age (6 years) in virtual children with obesity, highlighting the importance of considering both age and obesity status when selecting an infusion rate most likely to achieve steady-state concentrations within the target range. Methadone dosing simulations highlight the importance of considering genotype in addition to obesity status when possible, as cytochrome P450 (CYP)2B6*6/*6 virtual children with obesity required half the dose to match the exposure of wildtype children without obesity. This physiologically-based pharmacokinetic modeling approach can be applied to explore dosing of other critical drugs in children with obesity.


Asunto(s)
Analgésicos Opioides , Fentanilo , Adulto , Analgésicos Opioides/farmacocinética , Niño , Humanos , Metadona/efectos adversos , Metadona/farmacocinética , Obesidad/tratamiento farmacológico
7.
Clin Pharmacol Ther ; 112(2): 391-403, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35451072

RESUMEN

Dosing guidance for children with obesity is often unknown despite the fact that nearly 20% of US children are classified as obese. Enoxaparin, a commonly prescribed low-molecular-weight heparin, is dosed based on body weight irrespective of obesity status to achieve maximum concentration within a narrow therapeutic or prophylactic target range. However, whether children with and without obesity experience equivalent enoxaparin exposure remains unclear. To address this clinical question, 2,825 anti-activated factor X (anti-Xa) surrogate concentrations were collected from the electronic health records of 596 children, including those with obesity. Using linear mixed-effects regression models, we observed that 4-hour anti-Xa concentrations were statistically significantly different in children with and without obesity, even for children with the same absolute dose (P = 0.004). To further mechanistically explore obesity-associated differences in anti-Xa concentration, a pediatric physiologically-based pharmacokinetic (PBPK) model was developed in adults, and then scaled to children with and without obesity. This PBPK model incorporated binding of enoxaparin to antithrombin to form anti-Xa and elimination via heparinase-mediated metabolism and glomerular filtration. Following scaling, the PBPK model predicted real-world pediatric concentrations well, with an average fold error (standard deviation of the fold error) of 0.82 (0.23) and 0.87 (0.26) in children with and without obesity, respectively. PBPK model simulations revealed that children with obesity have at most 20% higher 4-hour anti-Xa concentrations under recommended, total body weight-based dosing compared to children without obesity owing to reduced weight-normalized clearance. Enoxaparin exposure was better matched across age groups and obesity status using fat-free mass weight-based dosing.


Asunto(s)
Enoxaparina , Tromboembolia Venosa , Adulto , Anticoagulantes , Niño , Enoxaparina/uso terapéutico , Heparina de Bajo-Peso-Molecular , Humanos , Obesidad , Tromboembolia Venosa/tratamiento farmacológico
8.
Clin Pharmacokinet ; 61(2): 307-320, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617262

RESUMEN

BACKGROUND AND OBJECTIVE: While one in five children in the USA are now obese, and more than three-quarters receive at least one drug during childhood, there is limited dosing guidance for this vulnerable patient population. Physiologically based pharmacokinetic modeling can bridge the gap in the understanding of how pharmacokinetics, including drug distribution and clearance, changes with obesity by incorporating known obesity-related physiological changes in children. The objective of this study was to develop a virtual population of children with obesity to enable physiologically based pharmacokinetic modeling, then use the novel virtual population in conjunction with previously developed models of clindamycin and trimethoprim/sulfamethoxazole to better understand dosing of these drugs in children with obesity. METHODS: To enable physiologically based pharmacokinetic modeling, a virtual population of children with obesity was developed using national survey, electronic health record, and clinical trial data, as well as data extracted from the literature. The virtual population accounts for key obesity-related changes in physiology relevant to pharmacokinetics, including increased body size, body composition, organ size and blood flow, plasma protein concentrations, and glomerular filtration rate. The virtual population was then used to predict the pharmacokinetics of clindamycin and trimethoprim/sulfamethoxazole in children with obesity using previously developed physiologically based pharmacokinetic models. RESULTS: Model simulations predicted observed concentrations well, with an overall average fold error of 1.09, 1.24, and 1.53 for clindamycin, trimethoprim, and sulfamethoxazole, respectively. Relative to children without obesity, children with obesity experienced decreased clindamycin and trimethoprim/sulfamethoxazole weight-normalized clearance and volume of distribution, and higher absolute doses under recommended pediatric weight-based dosing regimens. CONCLUSIONS: Model simulations support current recommended weight-based dosing in children with obesity for clindamycin and trimethoprim/sulfamethoxazole, as they met target exposure despite these changes in clearance and volume of distribution.


Asunto(s)
Clindamicina , Obesidad , Composición Corporal , Niño , Tasa de Filtración Glomerular , Humanos , Modelos Biológicos , Obesidad/tratamiento farmacológico , Combinación Trimetoprim y Sulfametoxazol/farmacocinética
9.
Drug Metab Dispos ; 49(9): 844-855, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34154994

RESUMEN

Solithromycin is a novel fluoroketolide antibiotic that is both a substrate and time-dependent inhibitor of CYP3A. Solithromycin has demonstrated efficacy in adults with community-acquired bacterial pneumonia and has also been investigated in pediatric patients. The objective of this study was to develop a framework for leveraging physiologically based pharmacokinetic (PBPK) modeling to predict CYP3A-mediated drug-drug interaction (DDI) potential in the pediatric population using solithromycin as a case study. To account for age, we performed in vitro metabolism and time-dependent inhibition studies for solithromycin for CYP3A4, CYP3A5, and CYP3A7. The PBPK model included CYP3A4 and CYP3A5 metabolism and time-dependent inhibition, glomerular filtration, P-glycoprotein transport, and enterohepatic recirculation. The average fold error of simulated and observed plasma concentrations of solithromycin in both adults (1966 plasma samples) and pediatric patients from 4 days to 17.9 years (684 plasma samples) were within 0.5- to 2.0-fold. The geometric mean ratios for the simulated area under the concentration versus time curve (AUC) extrapolated to infinity were within 0.75- to 1.25-fold of observed values in healthy adults receiving solithromycin with midazolam or ketoconazole. DDI potential was simulated in pediatric patients (1 month to 17 years of age) and adults. Solithromycin increased the simulated midazolam AUC 4- to 6-fold, and ketoconazole increased the simulated solithromycin AUC 1- to 2-fold in virtual subjects ranging from 1 month to 65 years of age. This study presents a systematic approach for incorporating CYP3A in vitro data into adult and pediatric PBPK models to predict pediatric CYP3A-mediated DDI potential. SIGNIFICANCE STATEMENT: Using solithromycin, this study presents a framework for investigating and incorporating CYP3A4, CYP3A5, and CYP3A7 in vitro data into adult and pediatric physiologically based pharmacokinetic models to predict CYP3A-mediated DDI potential in adult and pediatric subjects during drug development. In this study, minor age-related differences in inhibitor concentration resulted in differences in the magnitude of the DDI. Therefore, age-related differences in DDI potential for substrates metabolized primarily by CYP3A4 can be minimized by closely matching adult and pediatric inhibitor concentrations.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Macrólidos/administración & dosificación , Macrólidos/farmacocinética , Triazoles/administración & dosificación , Triazoles/farmacocinética , Adolescente , Adulto , Ansiolíticos/farmacocinética , Antifúngicos/farmacocinética , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Humanos , Lactante , Cetoconazol/farmacocinética , Midazolam/farmacocinética , Espectrometría de Masas en Tándem
10.
Neurochem Int ; 148: 105111, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34171414

RESUMEN

Early life stressors, such as social isolation (SI), can disrupt brain development contributing to behavioral and neurochemical alterations in adulthood. Purinergic receptors and ectonucleotidases are key regulators of brain development in embryonic and postnatal periods, and they are involved in several psychiatric disorders, including schizophrenia. The extracellular ATP drives purinergic signaling by activating P2X and P2Y receptors and it is hydrolyzed by ectonucleotidases in adenosine, which activates P1 receptors. The purpose of this study was to investigate if SI, a rodent model used to replicate abnormal behavior relevant to schizophrenia, impacts purinergic signaling. Male Wistar rats were reared from weaning in group-housed or SI conditions for 8 weeks. SI rats exhibited impairment in prepulse inhibition and social interaction. SI presented increased ADP levels in cerebrospinal fluid and ADP hydrolysis in the hippocampus and striatum synaptosomes. Purinergic receptor expressions were upregulated in the prefrontal cortex and downregulated in the hippocampus and striatum. A2A receptors were differentially expressed in SI prefrontal cortex and the striatum, suggesting distinct roles in these brain structures. SI also presented decreased ADP, adenosine, and guanosine levels in the cerebrospinal fluid in response to D-amphetamine. Like patients with schizophrenia, uric acid levels were prominently increased in SI rats after D-amphetamine challenge. We suggest that the SI-induced deficits in prepulse inhibition might be related to the SI-induced changes in purinergic signaling. We provide new evidence that purinergic signaling is markedly affected in a rat model relevant to schizophrenia, pointing out the importance of purinergic system in psychiatry conditions.


Asunto(s)
Receptores Purinérgicos , Transducción de Señal , Aislamiento Social , Adenosina Difosfato/líquido cefalorraquídeo , Animales , Conducta Animal , Estimulantes del Sistema Nervioso Central/farmacología , Dextroanfetamina/farmacología , Masculino , Nucleotidasas/metabolismo , Ratas , Ratas Wistar , Receptor de Adenosina A2A/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Reflejo de Sobresalto , Psicología del Esquizofrénico , Conducta Social , Aislamiento Social/psicología , Destete
11.
Epilepsia Open ; 6(1): 235-238, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33681667

RESUMEN

Objective: To report our initial experience using an adult-template MAP in drug-resistant focal epilepsy in five children with apparently normal MRI. Methods: Patients selected were highly suspicious of harboring focal structural lesions and had negative brain MRI studies. MAP was performed using a locally obtained adult database as a template. Results were reviewed by two neuroradiologists. Pertinence of MAP-positive areas was confirmed by the focal epileptic hypothesis or by pathology when possible (J Neuroradiol, 39, 2012, 87). Visual analysis was performed using Mango Software. MRI studies were reanalyzed at the workstation with knowledge of the clinical suspicion to confirm or discard the possibility of FCD. Results: Five patients aged 19-48 months were studied, all with initial 3T MRI studies interpreted as normal. All had focal epileptic hypothesis with coherence of clinical seizure characterization and electroencephalographic findings. In two patients, histology showed type 1 FCD. Due to the age of our subjects, the junction map always highlighted the subcortical white matter in relationship to maturity differences. FCD was identified as asymmetric U-shaped highlighted regions in the junction map. Significance: FCD is the most frequent pathology reported in pediatric epilepsy surgery series (Epileptic Disord, 18, 2016, 240). Significant number of FCDs may be overlooked on MRIs, reducing the odds of seizure freedom after surgery (Epilepsy Res, 89, 2010, 310). MAP is an image postprocessing method for enhanced visualization of FCD; however, when using an adult template in developing brains, normal subcortical regions may be highlighted as pathological. Creating a pediatric template is difficult, due to the need for general anesthesia to acquire the MRI database. Here, we were able to show that MAP identified FCDs as asymmetric "U-" shaped highlighted regions in the junction maps of all five patients, which may indicate that obtaining childhood databases for this purpose may not be necessary and that adult ones suffice for diagnosis of FCD.


Asunto(s)
Bases de Datos Factuales , Epilepsia Refractaria/patología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Adulto , Preescolar , Epilepsia Refractaria/diagnóstico , Electroencefalografía , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Convulsiones/patología , Sustancia Blanca/patología , Adulto Joven
12.
J Fungi (Basel) ; 7(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467409

RESUMEN

We describe a case of chronic meningoencephalitis with hydrocephalus caused by Cryptococcus bacillisporus (VGIII) in an immunocompetent patient from Santa Cruz, Bolivia. This first report of a member of the Cryptococcus gattii species complex from Bolivia suggests that C. bacillisporus (VGIII) is present in this tropical region of the country and complements our epidemiological and clinical knowledge of this group of emerging fungal pathogens in South America.

13.
PLoS One ; 15(9): e0239413, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32946520

RESUMEN

In arthropods, the cleavage of specific proteins by peptidases has pivotal roles in multiple physiological processes including oogenesis, immunity, nutrition, and parasitic infection. These enzymes are also key players in the larval development, and well-described triggers of molting and metamorphosis. In this work the peptidase complement throughout the larvae development of Penaeus vannamei was quantified at the transcript and activity level using qPCR and fluorogenic substrates designed to be hydrolyzed by class-specific peptidases respectively, providing a detailed identification of the proteolytic repertoire in P. vannamei larvae. Significant changes in the peptidase activity profile were observed. During the lecithotrophic naupliar instars, the dominant peptidase activity and expression derive from cysteine peptidases, suggesting that enzymes of this class hydrolyze the protein components of yolk as the primary amino acid source. At the first feeding instar, zoea, dominant serine peptidase activity was found where trypsin activity is particularly high, supporting previous observations that during zoea the breakdown of food protein is primarily enzymatic. At decapodid stages the peptidase expression and activity is more diverse indicating that a multienzyme network achieves food digestion. Our results suggest that proteolytic enzymes fulfill specific functions during P. vannamei larval development.


Asunto(s)
Perfilación de la Expresión Génica , Larva/crecimiento & desarrollo , Penaeidae/crecimiento & desarrollo , Penaeidae/metabolismo , Proteolisis , Animales , Hidrólisis , Penaeidae/genética , ARN Mensajero/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-32771966

RESUMEN

A versatile method was developed and validated for simultaneous determination of the monoamine neurotransmitters (MNT) dopamine (DA), 3-4-dyhydroxyphenilacetic acid (DOPAC), homovanilic acid (HVA), serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) in rat brain microdialysate samples using high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). The method allowed for small sample volume, using positive and negative ionization mode in a single run analysis without any derivatization or cleanup steps. Analytes were quantified at concentrations ranging from 100 ng/mL to 0.05, 10, 0.5, 0.1 or 1 ng/mL (lower limit of quantification, LLOQ) of DA, DOPAC, HVA, 5-HT and 5-HIAA, respectively, showing linearity (r > 0.98), accuracy, and precision (R.S.D ± 15%) according to validation limits accepted by international guidelines. The method was successfully applied for monitoring the concentration changes of MNT in microdialysate samples from medium prefrontal cortex of Wistar rats in a neurodevelopmental model of schizophrenia before and after quetiapine 5 mg/kg i.v. bolus dose administration. No alterations in MNTs were observed in schizophrenia phenotyped rats (SPR) in comparison to the baseline shading a light on the limited response rate to antipsychotic drugs observed in chronic schizophrenic patients.


Asunto(s)
Química Encefálica , Cromatografía Liquida/métodos , Neurotransmisores/análisis , Fumarato de Quetiapina , Esquizofrenia/metabolismo , Animales , Química Encefálica/efectos de los fármacos , Química Encefálica/fisiología , Modelos Animales de Enfermedad , Modelos Lineales , Masculino , Microdiálisis , Neurotransmisores/metabolismo , Fumarato de Quetiapina/administración & dosificación , Fumarato de Quetiapina/farmacocinética , Fumarato de Quetiapina/farmacología , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodos
15.
J Pharmacol Exp Ther ; 375(1): 49-58, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32719070

RESUMEN

This study investigated plasma and brain disposition of quetiapine lipid core nanocapsules (QLNC) in naive and schizophrenic (SCZ-like) rats and developed a semimechanistic model to describe changes in both compartments following administration of the drug in solution (FQ) or nanoencapsulated. QLNC (1 mg/ml) presented 166 ± 39 nm, low polydispersity, and high encapsulation (93.0% ± 1.4%). A model was built using experimental data from total and unbound plasma and unbound brain concentrations obtained by microdialysis after administration of single intravenous bolus dose of FQ or QLNC to naive and SCZ-like rats. A two-compartment model was identifiable both in blood and in brain with a bidirectional drug transport across the blood-brain barrier (CLin and CLout). SCZ-like rats' significant decrease in brain exposure with FQ (decrease in CLin) was reverted by QLNC, showing that nanocarriers govern quetiapine tissue distribution. Model simulations allowed exploring the potential of LNC for brain delivery. SIGNIFICANCE STATEMENT: A population approach was used to simultaneously model total and unbound plasma and unbound brain quetiapine concentrations allowing for quantification of the rate and extent of the drug's brain distribution following administration of both free drug in solution or as nanoformulation to naive and SCZ-like rats. The model-based approach is useful to better understand the possibilities and limitations of this nanoformulation for drug delivering to the brain, opening the opportunity to use this approach to improve SCZ-treatment-limited response rates.


Asunto(s)
Antipsicóticos/farmacocinética , Encéfalo/efectos de los fármacos , Portadores de Fármacos/farmacocinética , Modelos Biológicos , Nanocápsulas/administración & dosificación , Fumarato de Quetiapina/farmacocinética , Esquizofrenia/tratamiento farmacológico , Animales , Antipsicóticos/administración & dosificación , Antipsicóticos/sangre , Antipsicóticos/farmacología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Portadores de Fármacos/administración & dosificación , Femenino , Masculino , Microdiálisis , Fumarato de Quetiapina/administración & dosificación , Fumarato de Quetiapina/sangre , Fumarato de Quetiapina/farmacología , Ratas , Ratas Wistar , Reflejo de Sobresalto/efectos de los fármacos , Esquizofrenia/sangre , Esquizofrenia/metabolismo
16.
Schizophr Res ; 218: 173-179, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31973996

RESUMEN

Lipid core nanocapsules (LNC) have been extensively studied as a new treatment strategy to improve therapeutic effects of antipsychotic drugs. We investigated the efficacy of quetiapine LNCs (QLNCs) on the poly(i:c) model of schizophrenia in both male and female rats using the pre-pulse inhibition of startle response (PPI) test paradigm after evaluating the outcomes of three different poly(i:c) doses administered to pregnant damns at GD15 on neurodevelopmental outcomes of maternal immune activation (MIA) in adult offspring. QTP solution was not capable of producing a reversal in the sensorimotor gating-disruptive effect caused by the prenatal poly(i:c) exposure. The same dose of QTP given as QLNCs significantly improved PPI-impairment. This is the first study reporting the restoration of the PPI deficits in a neurodevelopmental model of SCZ using LNCs. This is a promising delivery system strategy to improve antipsychotic effects contributing to the development of better SCZ pharmacological treatments.


Asunto(s)
Antipsicóticos , Nanocápsulas , Esquizofrenia , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Femenino , Lípidos , Masculino , Nanocápsulas/uso terapéutico , Embarazo , Inhibición Prepulso , Fumarato de Quetiapina/uso terapéutico , Ratas , Reflejo de Sobresalto , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico
17.
Nutrients ; 10(11)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360555

RESUMEN

Gluconeogenesis overstimulation due to hepatic insulin resistance is the best-known mechanism behind elevated glycemia in obese subjects with hepatic steatosis. This suggests that glucose production in fatty livers may differ from that of healthy livers, also in response to other gluconeogenic determinant factors, such as the type of substrate and modulators. Thus, the aim of this study was to investigate the effects of these factors on hepatic gluconeogenesis in cafeteria diet-induced obese adult rats submitted to a cafeteria diet at a young age. The livers of the cafeteria group exhibited higher gluconeogenesis rates when glycerol was the substrate, but lower rates were found when lactate and pyruvate were the substrates. Stearate or glucagon caused higher stimulations in gluconeogenesis in cafeteria group livers, irrespective of the gluconeogenic substrates. An increased mitochondrial NADH/NAD⁺ ratio and a reduced rate of 14CO2 production from [14C] fatty acids suggested restriction of the citric acid cycle. The higher glycogen and lipid levels were possibly the cause for the reduced cellular and vascular spaces found in cafeteria group livers, likely contributing to oxygen consumption restriction. In conclusion, specific substrates and gluconeogenic modulators contribute to a higher stimulation of gluconeogenesis in livers from the cafeteria group.


Asunto(s)
Dieta/efectos adversos , Ácidos Grasos/metabolismo , Hígado Graso/inducido químicamente , Glucagón/metabolismo , Gluconeogénesis/efectos de los fármacos , Animales , Ingestión de Energía , Conducta Alimentaria , Glucosa/metabolismo , Ácido Láctico/administración & dosificación , Ácido Láctico/farmacología , Masculino , Obesidad/inducido químicamente , Consumo de Oxígeno , Ácido Pirúvico/administración & dosificación , Ácido Pirúvico/farmacología , Ratas , Ratas Wistar
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(7): 2495-2509, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29653185

RESUMEN

The present study was planned to improve our understanding about sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Female (FCaf) and male (MCaf) mice fed a cafeteria diet had similar body weight gain and adiposity index, but FCaf had a more extensive steatosis than MCaf. FCaf livers exhibited a higher non-alcoholic fatty liver disease activity score, elevated lipid percentage area (+34%) in Sudan III staining and increased TG content (+25%) compared to MCaf. Steatosis in FCaf was not correlated with changes in the transcript levels of lipid metabolism-related genes, but a reduced VLDL release rate was observed. Signs of oxidative stress were found in FCaf livers, as elevated malondialdehyde content (+110%), reduced catalase activity (-36%) and increased Nrf2 and Hif1a mRNA expression compared to MCaf. Interestingly, fibroblast growth factor 21 (Fgf21) mRNA expression was found to be exclusively induced in MCaf, which also exhibited higher FGF21 serum levels (+416%) and hepatic protein abundance (+163%) than FCaf. Moreover, cafeteria diet increased Fgfr1, Fsp27 and Ucp1 mRNA expression in brown adipose tissue of males (MCaf), but not females (FCaf). FGF21 hepatic production by male mice seems to be part of a complex network of responses to the nutritional stress of the cafeteria diet, probably related to the unfolded protein response activation. Although aimed at the restoration of hepatic metabolic homeostasis, the branch involving Fgf21 upregulation seems to be impaired in females, rendering them incapable of reducing the hepatic lipid content and cellular oxidative stress.


Asunto(s)
Dieta/efectos adversos , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Animales , Femenino , Factores de Crecimiento de Fibroblastos/biosíntesis , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hígado/patología , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/etiología , Obesidad/patología
19.
Pharm Res ; 35(7): 132, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29704215

RESUMEN

PURPOSE: The present work aimed to evaluate the influence of experimental meningitis caused by C. neoformans on total plasma and free brain concentrations of fluconazole (FLC) in Wistar rats. METHOD: The infection was induced by the administration of 100 µL of inoculum (1.105 CFU) through the tail vein. Free drug in the brain was assessed by microdialisys (µD). Blood and µD samples were collected at pre-determined time points up to 12 h after intravenous administration of FLC (20 mg/kg) to healthy and infected rats. The concentration-time profiles were analyzed by non-compartmental and population pharmacokinetics approaches. RESULTS: A two-compartmental popPK model was able to simultaneously describe plasma and free drug concentrations in the brain for both groups investigated. Analysis of plasma and µD samples showed a better FLC distribution on the brain of infected than healthy animals (1.04 ± 0.31 vs 0.69 ± 0.14, respectively). The probability of target attainment was calculated by Monte Carlo simulations based on the developed popPK model for 125 mg/kg dose for rats and 400-2000 mg for humans. CONCLUSIONS: FLC showed a limited use in monotherapy to the treatment of criptoccocosis in rats and humans to value of MIC >8 µg/mL.


Asunto(s)
Antifúngicos/metabolismo , Encéfalo/metabolismo , Criptococosis/metabolismo , Cryptococcus neoformans/metabolismo , Fluconazol/metabolismo , Modelos Biológicos , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Encéfalo/efectos de los fármacos , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/efectos de los fármacos , Fluconazol/farmacología , Fluconazol/uso terapéutico , Masculino , Pruebas de Sensibilidad Microbiana/métodos , Método de Montecarlo , Ratas , Ratas Wistar
20.
Artículo en Inglés | MEDLINE | ID: mdl-29032300

RESUMEN

Cathepsin D is an aspartic endopetidase with typical characteristics of lysosomal enzymes. Cathepsin D activity has been reported in the gastric fluid of clawed lobsters where it acts as an extracellular digestive enzyme. Here we investigate whether cathepsin D is unique in clawed lobsters or, instead, common in decapod crustaceans. Eleven species of decapods belonging to six infraorders were tested for cathepsin D activity in the midgut gland, the muscle tissue, the gills, and when technically possible, in the gastric fluid. Cathepsin D activity was present in the midgut gland of all 11 species and in the gastric fluid from the seven species from which samples could be taken. All sampled species showed higher activities in the midgut glands than in non-digestive organs and the activity was highest in the clawed lobster. Cathepsin D mRNA was obtained from tissue samples of midgut gland, muscle, and gills. Analyses of deduced amino acid sequence confirmed molecular features of lysosomal cathepsin D and revealed high similarity between the enzymes from Astacidea and Caridea on one side, and the enzymes from Penaeoidea, Anomura, and Brachyura on the other side. Our results support the presence of cathepsin D activity in the midgut glands and in the gastric fluids of several decapod species suggesting an extracellular function of this lysosomal enzyme. We discuss whether cathepsin D may derive from the lysosomal-like vacuoles of the midgut gland B-cells and is released into the gastric lumen upon secretion by these cells.


Asunto(s)
Proteínas de Artrópodos , Catepsina D , Decápodos , Regulación Enzimológica de la Expresión Génica/fisiología , Animales , Proteínas de Artrópodos/biosíntesis , Proteínas de Artrópodos/genética , Catepsina D/biosíntesis , Catepsina D/genética , Decápodos/enzimología , Decápodos/genética , Especificidad de Órganos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...